Source code for koho.sklearn._decision_tree

# encoding=utf-8
""" Decision Tree module.

- Classification
- Numerical (dense) data
- Missing values (Not Missing At Random (NMAR))
- Class balancing
- Multi-Class
- Multi-Output (single model)
- Build order: depth first
- Impurity criteria: gini
- Split a. features: best over k (incl. all) random features
- Split b. thresholds: 1 random or all thresholds
- Stop criteria: max depth, (pure, no improvement)
- Important Features
- Export Graph

Implementation Optimizations:
stack, samples LUT with in-place partitioning, incremental histogram updates

Python interface compatible with scikit-learn.
"""

# Author: AI Werkstatt (TM)
# (C) Copyright 2019, AI Werkstatt (TM) www.aiwerkstatt.com. All rights reserved.

# Scikit-learn compatible
# http://scikit-learn.org/stable/developers
# Trying to be consistent with scikit-learn's decision tree module
# https://github.com/scikit-learn/scikit-learn
# Basic concepts for the implementation of the classifier are based on
# G. Louppe, “Understanding Random Forests”, PhD Thesis, 2014

import numbers
import numpy as np
import scipy
import operator
from functools import reduce
from sklearn.base import BaseEstimator, ClassifierMixin, MultiOutputMixin
from sklearn.utils.validation import check_X_y, check_array, check_is_fitted, check_consistent_length
from sklearn.utils.multiclass import unique_labels

from io import StringIO

# Cython binding for C++ implementation
from ._decision_tree_cpp import RandomState, Tree, DepthFirstTreeBuilder

# ==============================================================================
# Decision Tree Classifier
# ==============================================================================


[docs]class DecisionTreeClassifier(BaseEstimator, ClassifierMixin, MultiOutputMixin): """ A decision tree classifier., Parameters ---------- class_balance : str 'balanced' or None, optional (default='balanced') Weighting of the classes. - If 'balanced', then the values of y are used to automatically adjust class weights inversely proportional to class frequencies in the input data. - If None, all classes are supposed to have weight one. max_depth : int or None, optional (default=None) The maximum depth of the tree. The depth of the tree is expanded until the specified maximum depth of the tree is reached or all leaves are pure or no further impurity improvement can be achieved. - If None, the maximum depth of the tree is set to max long (2^31-1). max_features : int, float, str or None, optional (default=None) Note: only to be used by Decision Forest The number of random features to consider when looking for the best split at each node. - If int, then consider ``max_features`` features. - If float, then ``max_features`` is a percentage and int(``max_features`` * n_features) features are considered. - If 'auto', then ``max_features`` = sqrt(n_features). - If 'sqrt', then ``max_features`` = sqrt(n_features). - If 'log2', then ``max_features`` = log2(n_features). - If None, then ``max_features`` = n_features considering all features in random order. Note: the search for a split does not stop until at least one valid partition of the node samples is found up to the point that all features have been considered, even if it requires to effectively inspect more than ``max_features`` features. `Decision Tree`: ``max_features`` = None and ``max_thresholds`` = None `Random Tree`: ``max_features`` < n_features and ``max_thresholds`` = None max_thresholds : int 1 or None, optional (default=None) Note: only to be used by Decision Forest The number of random thresholds to consider when looking for the best split at each node. - If 1, then consider 1 random threshold, based on the `Extreme Randomized Tree` formulation. - If None, then all thresholds, based on the mid-point of the node samples, are considered. `Extreme Randomized Trees (ET)`: ``max_thresholds`` = 1 `Totally Randomized Trees`: ``max_features`` = 1 and ``max_thresholds`` = 1, very similar to `Perfect Random Trees (PERT)`. missing_values : str 'NMAR' or None, optional (default=None) Handling of missing values. - If 'NMAR' (Not Missing At Random), then during training: the split criterion considers missing values as another category and samples with missing values are passed to either the left or the right child depending on which option provides the best split, and then during testing: if the split criterion includes missing values, a missing value is dealt with accordingly (passed to left or right child), or if the split criterion does not include missing values, a missing value at a split criterion is dealt with by combining the results from both children proportionally to the number of samples that are passed to the children during training. - If None, an error is raised if one of the features has a missing value. An option is to use imputation (fill-in) of missing values prior to using the decision tree classifier. random_state : int or None, optional (default=None) A random state to control the pseudo number generation and repetitiveness of fit(). - If int, random_state is the seed used by the random number generator; - If None, the random number generator is seeded with the current system time. Attributes ---------- n_outputs_ : int The number of outputs (multi-output). classes_ : list of variable size arrays, shape = [n_classes for each output] The classes labels for each output. n_classes_ : list of int The number of classes for each output. n_features_ : int The number of features. max_features_ : int The inferred value of max_features. tree_ : tree object The underlying estimator. feature_importances_ : array, shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. """ # We use 'class_balance' as the hyperparameter name instead of 'class_weight' # The “class_weight” hyperparameter name is recognized by 'check_estimator()' # and the test “check_class_weight_ classifiers()” is performed that uses the # dict parameter and requires for a decision tree the “min_weight_fraction_leaf” # hyperparameter to be implemented to pass the test.
[docs] def __init__(self, class_balance='balanced', max_depth=None, max_features=None, max_thresholds=None, missing_values=None, random_state=None): """ Create a new decision tree classifier and initialize it with hyperparameters. """ # Hyperparameters self.class_balance = class_balance self.max_depth = max_depth self.max_features = max_features self.max_thresholds = max_thresholds self.missing_values = missing_values # Random Number Generator self.random_state = random_state return
[docs] def fit(self, X, y): """ Build a decision tree classifier from the training data. Parameters ---------- X : array, shape = [n_samples, n_features] The training input samples. y : array, shape = [n_samples] or [n_samples, n_outputs] The target class labels corresponding to the training input samples. Returns ------- self : object Returns self. """ # Check and prepare data # ---------------------- # Check X, y if self.missing_values == 'NMAR': X, y = check_X_y(X, y, dtype=np.float64, order="C", force_all_finite='allow-nan', multi_output=True) else: X, y = check_X_y(X, y, dtype=np.float64, order="C", multi_output=True) n_samples, self.n_features_ = X.shape # Handle multi-outputs if y.ndim == 1: # 2D format for single-output and multi-output y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if y.shape[0] != n_samples: raise ValueError("Mismatch: n_outputs, n_features and n_samples.") self.classes_ = [] # lists with an element for each output self.n_classes_ = np.zeros(self.n_outputs_, dtype=np.uint) y_int = np.zeros(y.shape, dtype=np.int) # make sure y is integer for o in range(self.n_outputs_): # process each output independently o_classes = unique_labels(y[:, o]) # Keep to raise required ValueError tested by 'check_estimator()' o_classes, y_int[:, o] = np.unique(y[:, o], return_inverse=True) # Encode y from classes to integers self.classes_.append(o_classes) self.n_classes_[o] = o_classes.shape[0] if self.n_outputs_ == 1: self.classes_ = reduce(operator.concat, self.classes_) # Calculate class weights for each output separately # so that n_samples == sum of all weighted samples # Note that scikit-learn provides: 'compute_class_weight()' and 'compute_sample_weight()' # which multiplies the sample_weights of each output together to a single sample_weight # for multi-output (single model). # we use max(n_classes_) to create a nice 2D array to hold the class weights # as the number of classes can be different for different outputs class_weight = np.ones(shape=(self.n_outputs_, max(self.n_classes_)), dtype=np.float64) if self.class_balance is not None: if isinstance(self.class_balance, str): if self.class_balance in ['balanced']: for o in range(self.n_outputs_): # process each output independently # The 'balanced' mode uses the values of y to # automatically adjust weights inversely proportional # to class frequencies in the input data. mean_samples_per_class = y_int[:, o].shape[0] / self.n_classes_[o] class_weight[o, :self.n_classes_[o]] = mean_samples_per_class / np.bincount(y_int[:, o]) else: raise ValueError("class_balance: unsupported string \'%s\', " "only 'balanced' is supported." % self.class_balance) else: raise TypeError("class_balance: %s is not supported." % self.class_balance) # Check hyperparameters (here, not in __init__) # max depth if self.max_depth is not None: if not isinstance(self.max_depth, (numbers.Integral, np.integer)): raise TypeError("max_depth: must be an integer.") max_depth = self.max_depth if self.max_depth is not None else (2 ** 31) - 1 if max_depth < 1: raise ValueError("max_depth: %s < 1, " "but a decision tree requires to have at least a root node." % max_depth) # max features if self.max_features is not None: if isinstance(self.max_features, str): if self.max_features in ['auto', 'sqrt']: max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features in ['log2']: max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError("max_features: unsupported string \'%s\', " "only 'auto', 'sqrt' and 'log2' are supported." % self.max_features) elif isinstance(self.max_features, (numbers.Integral, np.integer)): if self.max_features > 0: max_features = self.max_features else: raise ValueError("max_features: %s < 1, " "but a spit requires to consider a least 1 feature." % self.max_features) elif isinstance(self.max_features, (numbers.Real, np.float)): if self.max_features > 0.0: if self.max_features <= 1.0: max_features = max(1, min(int(self.max_features * self.n_features_), self.n_features_)) else: raise ValueError("max_features: %s > 1.0, " "only floats <= 1.0 are supported." % self.max_features) else: raise ValueError("max_features: %s <= 0.0, " "only floats > 0.0 are supported." % self.max_features) else: raise TypeError("max_features: %s is not supported, " "only 'None', strings: 'auto', 'sqrt', 'log2', integers and floats are supported." % self.max_features) else: max_features = self.n_features_ if not (0 < max_features <= self.n_features_): raise ValueError("max_features: %s not in (0, n_features]" % max_features) self.max_features_ = max_features # max thresholds max_thresholds = None if self.max_thresholds is not None: if isinstance(self.max_thresholds, (numbers.Integral, np.integer)): if self.max_thresholds == 1: max_thresholds = 1 else: raise ValueError("max_thresholds: %s != 1, " "only 1 is supported." % self.max_thresholds) else: raise TypeError("max_thresholds: %s is not supported, " "only 'None' and '1' are supported." % self.max_thresholds) else: max_thresholds = 0 # missing values if self.missing_values is not None: if isinstance(self.missing_values, str): if self.missing_values in ['NMAR']: missing_values = self.missing_values else: raise ValueError("missing_values: unsupported string \'%s\', " "only 'NMAR' is supported." % self.missing_values) else: raise TypeError("missing_values: %s is not supported." % self.missing_values) else: missing_values = 'None' if np.any(np.isnan(X)): raise ValueError("missing_values: None, but X contains np.NaN.") # Random Number Generator random_state = RandomState(self.random_state) # Build decision tree # ------------------- # Initialize the tree builder builder = DepthFirstTreeBuilder(self.n_outputs_, self.n_classes_, max(self.n_classes_), self.n_features_, n_samples, class_weight, max_depth, max_features, max_thresholds, missing_values, random_state) # Create an empty tree self.tree_ = Tree(self.n_outputs_, self.n_classes_, self.n_features_) # Build a decision tree from the training data X, y # workaround cython not supporting read-only memory view # https://github.com/cython/cython/issues/1605 if not X.flags.writeable: X = X.copy() builder.build(self.tree_, X, y_int) # Return the classifier return self
[docs] def predict(self, X): """ Predict classes for the test data. Parameters ---------- X : array, shape = [n_samples, n_features] The test input samples. Returns ------- y : array, shape = [n_samples] or [n_samples, n_outputs] The predicted classes for the test input samples. """ # Check that fit has been called check_is_fitted(self, ['tree_']) # Check X if self.missing_values == 'NMAR': X = check_array(X, dtype=np.float64, order="C", force_all_finite='allow-nan') else: X = check_array(X, dtype=np.float64, order="C") n_samples = X.shape[0] n_classes_max = max(self.n_classes_) # Predict classes probabilities class_probablities = self.predict_proba(X) # Handle single-output and multi-outputs formatting # 2D format for single-output and multi-output class_probablities = np.reshape(class_probablities, (-1, self.n_outputs_, n_classes_max)) # Handle multi-outputs formatting y = [] if self.n_outputs_ == 1: # Determine class based on highest classes probabilities predictions = np.argmax(class_probablities[:, 0], axis=1) # Decode y back from integers to classes y = self.classes_.take(predictions, axis=0) else: for o in range(self.n_outputs_): # Determine class based on highest classes probabilities predictions = np.argmax(class_probablities[:, o], axis=1) # Decode y back from integers to classes y.append(self.classes_[o].take(predictions, axis=0)) y = np.array(y) y = np.reshape(y.transpose(), (-1, self.n_outputs_)) # 2D format for multi-output return y
[docs] def predict_proba(self, X): """ Predict classes probabilities for the test data. Parameters ---------- X : array, shape = [n_samples, n_features] The test input samples. Returns ------- p : array, shape = [n_samples x n_classes] or [n_samples x n_outputs x n_classes_max] The predicted classes probabilities for the test input samples. """ # Check that fit has been called check_is_fitted(self, ['tree_']) # Check X if self.missing_values == 'NMAR': X = check_array(X, dtype=np.float64, order="C", force_all_finite='allow-nan') else: X = check_array(X, dtype=np.float64, order="C") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("X: number of features %s != number of features of the model %s, " "must match." % (n_features, self.n_features_)) # Predict classes probabilities # workaround cython not supporting read-only memory view # https://github.com/cython/cython/issues/1605 if not X.flags.writeable: X = X.copy() proba = self.tree_.predict(X) # Handle single-output and multi-outputs formatting n_classes_max = max(self.n_classes_) if self.n_outputs_ == 1: proba = np.reshape(proba, (-1, self.n_classes_[0])) else: proba = np.reshape(proba, (-1, self.n_outputs_, n_classes_max)) return proba
[docs] def score(self, X, y): """Returns the mean accuracy on the given test data and labels. sklearn has no metrics support for "multiclass-multioutput" format, therefore we implement our own score() here In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. Returns ------- score : float Mean accuracy of self.predict(X) wrt. y. """ y_pred = self.predict(X) # Handle single-output and multi-outputs formatting y = y.ravel() y_pred = y_pred.ravel() # No metrics support "multiclass-multioutput" format # y_type, y, y_pred = _check_targets(y, y_pred) check_consistent_length(y, y_pred) score = np.average(y == y_pred) return score
@property def feature_importances_(self): """ Get feature importances from the decision tree. """ # Check that fit has been called check_is_fitted(self, ['tree_']) # Calculate feature importances for the decision tree return self.tree_.calculate_feature_importances()
[docs] def export_graphviz(self, feature_names=None, class_names=None, rotate=False): """ Export of a decision tree in GraphViz dot format. Parameters ---------- feature_names : list of str, optional (default=None) Names of each of the features. class_names : list of str, optional (default=None) Names of each of the classes in ascending numerical order. Classes are represented as integers: 0, 1, ... (n_classes-1). If y consists of class labels, those class labels need to be provided as class_names again. rotate : bool, optional (default=False) When set to True, orient tree left to right rather than top-down. Returns ------- dot_data : str String representation of the decision tree classifier in GraphViz dot format. """ def process_tree_recursively(tree, node_id): """ Process tree recursively node by node and provide GraphViz dot format for node.""" # Current node left_child = tree.get_node_left_child(node_id) right_child = tree.get_node_right_child(node_id) feature = tree.get_node_feature(node_id) NA = tree.get_node_NA(node_id) threshold = tree.get_node_threshold(node_id) histogram = tree.get_node_histogram(node_id) impurity = tree.get_node_impurity(node_id) # Prediction n = sum(histogram[0]) # use histogram from 1st output, all the same p_c = [0.0]*tree.get_n_outputs() c = [0]*tree.get_n_outputs() for o in range(tree.get_n_outputs()): p_c[o] = histogram[o] / n c[o] = np.argmax(p_c[o]) # formatting p_c[o] = [int(x) if x % 1 == 0 else round(float(x), 2) for x in p_c[o]] # Node color and intensity based on classification and impurity classes_combination = c[0] for o in range(1, tree.get_n_outputs()): classes_combination += tree.get_n_classes()[o-1] * c[o] (r, g, b) = rgb_LUT[classes_combination] max_impurity = [0.0]*tree.get_n_outputs() for o in range(0, tree.get_n_outputs()): max_impurity[o] = 1.0 - (1.0 / tree.get_n_classes()[o]) max_impurity_avrg = sum(max_impurity) / tree.get_n_outputs() alpha = int(255 * (max_impurity_avrg - impurity) / max_impurity_avrg) color = '#' + ''.join('{:02X}'.format(a) for a in [r, g, b, alpha]) # #RRGGBBAA hex format # Leaf node if left_child == 0: # leaf nodes do no have any children # so we only need to test for one of the children # Node dot_data.write('%d [label=\"' % node_id) for o in range(tree.get_n_outputs()): dot_data.write('%s\\n' % p_c[o][:tree.get_n_classes()[o]]) if tree.get_n_outputs() == 1: class_name = class_names[c[0]] if class_names is not None else "%d" % c[0] dot_data.write('%s' % class_name) else: for o in range(tree.get_n_outputs()): class_name = class_names[o][c[o]] if class_names is not None else "%d" % c[o] dot_data.write('%s\\n' % class_name) dot_data.write('\", fillcolor=\"%s\"] ;\n' % color) # Split node else: # Order children nodes by predicted classes (and their probabilities) # Switch left_child with right_child and # modify test feature <= threshold (default) vs feature > threshold accordingly order = True test_type = 0 # 0: feature <= threshold (default) # 1: feature > threshold, when left and right children are switched change = False if order: # Order children based on prediction from first output # Left Child Prediction lc_histogram = tree.get_node_histogram(left_child)[0] lc_c = np.argmax(lc_histogram) lc_n = sum(lc_histogram) lc_p_c = lc_histogram[lc_c] / lc_n # Right Child Prediction rc_histogram = tree.get_node_histogram(right_child)[0] rc_c = np.argmax(rc_histogram) rc_n = sum(rc_histogram) rc_p_c = rc_histogram[rc_c] / rc_n # Determine if left_child and right_child should be switched based on predictions if lc_c > rc_c: # assign left child to lower class index change = True elif lc_c == rc_c: # if class indices are the same for left and right children if lc_c == 0: # for the first class index = 0 if lc_p_c < rc_p_c: # assign left child to higher class probability change = True else: # for all other class indices > 0 if lc_p_c > rc_p_c: # assign left child to lower class probability change = True if change: test_type = 1 left_child, right_child = right_child, left_child feature_name = feature_names[feature] if feature_names is not None else "X[%d]" % feature threshold = round(threshold, 3) # Edge width based on (weighted) number of samples used for training # use histogram from 1st output, all the same n_root = sum(tree.get_node_histogram(0)[0]) # total number of samples used for training n_left_child = sum(tree.get_node_histogram(left_child)[0]) / n_root # normalized n_right_child = sum(tree.get_node_histogram(right_child)[0]) / n_root max_width = 10 # Node dot_data.write('%d [label=\"' % node_id) # - feature dot_data.write('%s' % feature_name) # - threshold if not np.isnan(threshold): if test_type == 0: dot_data.write(' <= %s' % threshold) else: # test_type == 1 dot_data.write(' > %s' % threshold) # - NA if NA != -1: if change == False: if NA == 0: # left dot_data.write(' NA') if NA == 1: # right dot_data.write(' not NA') else: # test_type == 1 if NA == 0: # right dot_data.write(' not NA') if NA == 1: # left dot_data.write(' NA') # - histogram if node_id == 0: # Root node with legend dot_data.write('\\np(class) = ') for o in range(tree.get_n_outputs()): dot_data.write('%s\\n' % p_c[o][:tree.get_n_classes()[o]]) dot_data.write('class, n = %s' % int(round(n, 0))) else: dot_data.write('\\n') if tree.get_n_outputs() == 1: dot_data.write('%s' % p_c[0][:tree.get_n_classes()[0]]) else: for o in range(tree.get_n_outputs()): dot_data.write('%s\\n' % p_c[o][:tree.get_n_classes()[o]]) dot_data.write('\", fillcolor=\"%s\"] ;\n' % color) # Edges # - left child dot_data.write('%d -> %d [penwidth=%f' % (node_id, left_child, max_width * n_left_child)) if node_id == 0: # Root node with legend dot_data.write(', headlabel="True", labeldistance=2.5, labelangle=%d' % (-45 if rotate else 45)) dot_data.write('] ;\n') # - right child dot_data.write('%d -> %d [penwidth=%f] ;\n' % (node_id, right_child, max_width * n_right_child)) # layout problems with legend true and false depending on tree size # no need to define false when true is defined # process the children's sub trees recursively process_tree_recursively(tree, left_child) process_tree_recursively(tree, right_child) return def create_rgb_LUT(n_classes): """ Create a rgb color look up table (LUT) for all classes. """ # Define rgb colors for the different classes # with (somewhat) max differences in hue between nearby classes # Number of iterations over the grouping of 2x 3 colors n_classes = max(n_classes, 1) # input check > 0 n = ((n_classes - 1) // 6) + 1 # > 0 # Create a list of offsets for the grouping of 2x 3 colors # that (somewhat) max differences in hue between nearby classes offset_list = [0] # creates pure R G B - Y C M colors d = 128 n_offset_levels = int(scipy.log2(n - 1) + 1) if n > 1 else 1 # log(0) not defined n_offset_levels = min(n_offset_levels, 4) # limit number of colors to 96 for i in range(n_offset_levels): # Create in between R G B Y C M colors # in a divide by 2 pattern per level # i=0: + 128, # i=1: + 64, 192, # i=2: + 32, 160, 96, 224, # i=3: + 16, 144, 80, 208, 48, 176, 112, 240 # abs max i=7 with + 1 ... offset_list += ([int(offset + d) for offset in offset_list]) d /= 2 # If there are more classes than colors # then the offset_list is duplicated, # which assigns the same colors to different classes # but at least to the most distance classes length = len(offset_list) if n > length: offset_list = int(1 + scipy.ceil((n - length) / length)) * offset_list rgb_LUT = [] for i in range(n): # Calculate grouping of 2x 3 rgb colors R G B - Y C M # that (somewhat) max differences in hue between nearby classes # and makes it easy to define other in between colors # using a simple linear offset # Based on HSI to RGB calculation with I = 1 and S = 1 offset = offset_list[i] rgb_LUT.append((255, offset, 0)) # 0 <= h < 60 RED ... rgb_LUT.append((0, 255, offset)) # 120 <= h < 180 GREEN ... rgb_LUT.append((offset, 0, 255)) # 240 <= h < 300 BLUE ... rgb_LUT.append((255 - offset, 255, 0)) # 60 <= h < 120 YELLOW ... rgb_LUT.append((0, 255 - offset, 255)) # 180 <= h < 240 CYAN ... rgb_LUT.append((255, 0, 255 - offset)) # 300 <= h < 360 MAGENTA ... return rgb_LUT # Check that fit has been called check_is_fitted(self, ['tree_']) # Handle single-output and multi-output formatting if class_names is not None: if isinstance(class_names, list) or isinstance(class_names, np.ndarray): if self.tree_.get_n_outputs() == 1: class_names = np.array(class_names).ravel() else: raise TypeError("class_names type: %s is not supported." % type(class_names)) dot_data = StringIO() dot_data.write('digraph Tree {\n') dot_data.write( 'node [shape=box, style=\"rounded, filled\", color=\"black\", fontname=helvetica, fontsize=14] ;\n') dot_data.write('edge [fontname=helvetica, fontsize=12] ;\n') # Rotate (default: top-down) if rotate: dot_data.write('rankdir=LR ;\n') # left-right orientation # Define rgb colors for the different classes over all outputs n_classes_combinations = np.prod([self.tree_.get_n_classes()[o] for o in range(self.tree_.get_n_outputs())]) rgb_LUT = create_rgb_LUT(n_classes_combinations) # Process the tree recursively process_tree_recursively(self.tree_, 0) # root node = 0 dot_data.write("}") return dot_data.getvalue()
[docs] def export_text(self): """ Export of a decision tree in a simple text format. Returns ------- data : str String representation of the decision tree classifier in a simple text format. """ def process_tree_recursively(tree, node_id): """ Process tree recursively node by node and provide simple text format for node. """ # Current node left_child = tree.get_node_left_child(node_id) right_child = tree.get_node_right_child(node_id) feature = tree.get_node_feature(node_id) NA = tree.get_node_NA(node_id) threshold = round(tree.get_node_threshold(node_id), 3) histogram = [[int(x) if x % 1 == 0 else round(float(x), 2) for x in tree.get_node_histogram(node_id)[o][:tree.get_n_classes()[o]]] for o in range(tree.get_n_outputs())] # Leaf node if left_child == 0: # leaf nodes do no have any children # so we only need to test for one of the children data.write('%d ' % node_id) for o in range(tree.get_n_outputs()): data.write('%s' % histogram[o]) data.write('; ' % histogram[o]) # Split node else: data.write('%d' % node_id) data.write(' X[%d]' % feature) if not np.isnan(threshold): data.write('<=%s' % threshold) if NA == 0: data.write(' NA') if NA == 1: data.write(' not NA') data.write(' ') for o in range(tree.get_n_outputs()): data.write('%s' % histogram[o]) data.write('; ' % histogram[o]) data.write('%d->%d; ' % (node_id, left_child)) data.write('%d->%d; ' % (node_id, right_child)) # process the children's sub trees recursively process_tree_recursively(tree, left_child) process_tree_recursively(tree, right_child) return # Check that fit has been called check_is_fitted(self, ['tree_']) data = StringIO() # Process the tree recursively process_tree_recursively(self.tree_, 0) # root node = 0 return data.getvalue()